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Abstract: In this paper, the Hecke subgroup denoted by K associated with the generalized modular equation is determined. The

generators of K are
A=((1) (D andB=(; 2),

Q-z9m for s € (0,%]. It is shown that the moduli @ and f of the generalized modular equation are automorphic

where § = 2 cos

functions, respectively, on K and P~*KP for P = (g (1))
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Introduction: Forn € NU {0} and a, b, c € C (¢ # 0, —1, —2, ...), the Gaussian hypergeometric function, ,F;(a,b;c;z), is
defined by

o (@n)(bn)

Fi(a,b;c;z) = , <1,
2Fi(a, b;¢;z) )l z", |z

where (a,n)=1 if n=0, a#0 ad (aqn)=ala+1)-(a+n—-1) if n=1.  For a detailed
discussion, see [6, Chapter 1II] and [18, Chapter XIV]. For sE€ (O,l] and neN\{1}, the

2
following equation is called the generalized modular equation (cf. [11]):

zF1(S,1—S;1:1—ﬁ)_n Fi(s,1—s51;1—a)
LFi(s,1—5;1;8) JFi(s,1—s;1a)

1

For simplicity, assume that
Fla) = ;Fi(s,1-s:15a)

and we will use this notation in the rest of this paper. Many mathematicians studied the generalized modular equation (1) (cf. [1,
2,4, 5, 11, 12]), especially, the prominent Indian mathematician S. Ramanujan broadly studied the equation (1) and find many
identities involving the moduli @ and g (cf. [7, 8, 9, 10]). In this paper, we will show that the moduli & and  are automorphic
functions on some Hecke subgroups associated with the equation (1).

For the 2 X 2 identity matrix I,, the projective special linear group PSL,(R) is given by

a b

PSL,(R) = {(C d) ta,b,c,d €R, ad—be =1}/ (21,

(see [17, Chapter VII]). Let H = {a € C : Im a > 0}, then the action of PSL,(R) on H is given by

(e Buntitt

a b

where a € H and (C d

) € PSL,(R).

b

d)EK and @ € H, if

Let K be a discrete subgroup of PSL,(R). Suppose g: H — C is a holomorphic function. For (Z
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b
9 () = o+ g (@),

then g is known as a weight-k automorphic form. If k = 0, then

(aa+b
9 ca+d

) =g(a)
and g is called an automorphic function (cf. [13, 15]).

Foranintegerm = 3 and & = 2 Cos%, let

Uz(é f) and Vz((l) _3)

Then the group H = (U, V) is known as the Hecke group. See [14] and [16] for details about the Hecke group. In this paper, we
consider the subgroup K of H generated by

A=((1) f) andB=(; 2),

(1-2s)m
2

where § = 2 cos fors € (O, ﬂ

By using the following lemma, we will show that K = (4, B) is the Hecke subgroup associated with the generalized modular
equation (1).
Lemma 1 ([3], Lemma 4.1). For s € (0, %] if

F(1-a)
Z(Of) = Lw,

then z maps H = {a € C : Im a > 0} onto the following hyperbolic triangle

Z C

(1-2s)m (1-29)m
D=45z€H:0< Rez<cos > , |2z cos > —-1|1>1

in the z-plane. At the vertices

.(1-28)m

z(1) = 0,z(0) = and z() =e" 2
the interior angles of D are 0, 0 and (1 — 2s), respectively.
Main Results: In the following lemma, we find the appropriate group associated with the generalized modular equation (1).
Lemma 2. The group associated with the generalized modular equation

F(1-B) nF(l - a)
FB  Fla

is the Hecke subgroup K = (4, B), where

A=(é f) andB=(§ (1))

(1-2s)m

for§ = ZCOST, S E (0,—].
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Fig. 1: The transformation z(a) maps H onto D.

Proof. Fors € (O%] let

Fl-a)
Z((Z) =1W

By Lemma 1, z(a) maps £ = {a € C : Im a > 0} onto

D={z€}[:0<Rez<cos

as shown in Fig. 1.
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Fig. 2: Fundamental domain of K = (;4,3).

If we reflect D about the y-axis, then the region shown in Fig. 2 serves as the fundamental domain of the group K = (4, B),
where the side-pairing transformations A and B are the generators of the group K. Also, for

1-2s)m
6=2cos¥

and the Hecke group H = (U, V), where
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we have
1 6

A=U=(0 1

Hence we deduce that K = (4, B) is the required group.

Lemma 3. If
F(1-—
z(a) = ii(F(a)a),
then
1
a (—;) =1-a(z).
Proof. Since
F(1-
z(a) = i%,
we have
. F(a)
1-a@) ~'Fd-a)
1
I}

As a is the inverse of z, we have

1—a(z) = a(—%).

) and B=V-1U-v = (

1 0
6§ 1

)-

O

In the following theorem, we prove by using Lemma 3 that a(z) and 5(z) = a(nz) are automorphic functions on K and P~1KP,

respectively, where
~m 0
p=( 0 1).

=297 for s € (O, %] If a(2) is the inverse of

2

Theorem 1. Let § = 2 cos

F(1-—a)

Z((X)=iw

and 5 (z) = a(nz), then a(z) and B(z) are automorphic functions, respectively, on K and K’ = P~1KP, where

=G5 )

and K is the group generated by

Proof. If A" and B’ are the generators of K’, then

A'=PlAP = (1
0

_S| S
N————

and

pr=ppp=(1 Y

We need to show that

a(Az) = a(z), a(Bz) = a(z)
and

B(A'z) = B(z), B(B'z) = B(2).

Since exp (%ni(z + 5)) =exp (%ﬂ iz), we have z 4+ 6 = z. Thus a(z + §) = a(2), i.e., a(Az) = a(z). Also,

Volume 04, Issue 01, 2023

Page 70



Il
Q
o

(=2
N
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N~—

a(Bz)
C e+l
Now, using Lemma 3, we have
1
“\571) - 1_a(_(5+1)>
1
=1- a(—;) =a(z)
Thus, a(Bz) = a(z). Next, we have
B 1)
pan =H+3)
~o[ne+3))
=a(nz + 6)
= a(nz) = p(2)

and

1-af-2)

a(nz) = B(2). O

Conclusion: In this study, we have investigated the automorphicity of the moduli @ and 8 of the generalized modular equation
(1). The generators of the Hecke subgroups K associated with the generalized modular equation have been determined. It has
been proven that the modulus « is the automorphic function on K = (4, B), where

A=((1J (D andB=(§ 2)

and the modulus g is the automorphic function on K’ = (4’, B'), where

1)
A = (1 ;) and B’ = (n18 2)

0 1

for § = 2 cos (1_25)", s € (O,E].
2 2
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