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then   is known as a weight-  automorphic form. If    , then 
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and   is called an automorphic function (cf. [13, 15]). 
 

For an integer     and       
 

 
, let 
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Then the group   〈   〉 is known as the Hecke group. See [14] and [16] for details about the Hecke group. In this paper, we 

consider the subgroup   of   generated by 
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where       
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].  

By using the following lemma, we will show that   〈   〉 is the Hecke subgroup associated with the generalized modular 

equation (1). 
 

Lemma 1 ([3], Lemma 4.1). For   (  
 

 
], if  
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then   maps   *          + onto the following hyperbolic triangle  
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in the  -plane. At the vertices  
 

 ( )   , ( )    and  ( )    
(    ) 

 , 
 

the interior angles of   are  ,   and (    ) , respectively. 
 

Main Results: In the following lemma, we find the appropriate group associated with the generalized modular equation (1). 
 

Lemma 2. The group associated with the generalized modular equation 
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is the Hecke subgroup   〈   〉, where 
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Fig. 1: The transformation  ( ) maps   onto    

 

Proof.  For   (  
 

 
], let 

 ( )   
 (   )

 ( )
  

 

By Lemma 1,  ( ) maps   *          + onto  
 

  {              
(    ) 

 
 |      

(    ) 

 
  |   } 

as shown in Fig. 1. 

 

Fig. 2: Fundamental domain of   〈   〉. 

 

If we reflect   about the  -axis, then the region shown in Fig. 2 serves as the fundamental domain of the group   〈   〉, 

where the side-pairing transformations   and   are the generators of the group  . Also, for  
 

      
(    ) 

 
 

 

and the Hecke group   〈   〉, where 
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we have 
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Hence we deduce that   〈   〉 is the required group.    
 

Lemma 3. If  
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then 
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Proof. Since 
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we have  
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As   is the inverse of  , we have 
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In the following theorem, we prove by using Lemma 3 that  ( ) and  ( )   (  ) are automorphic functions on   and      , 

respectively, where 
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Theorem 1. Let       
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]. If  ( ) is the inverse of  
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and  ( )   (  ), then  ( ) and  ( ) are automorphic functions, respectively, on   and         , where 
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and   is the group generated by 
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Proof. If    and    are the generators of   , then 
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We need to show that  
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Now, using Lemma 3, we have 
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Thus,  (  )   ( ). Next, we have  
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Conclusion: In this study, we have investigated the automorphicity of the moduli   and   of the generalized modular equation 

(1). The generators of the Hecke subgroups   associated with the generalized modular equation have been determined. It has 

been proven that the modulus   is the automorphic function on   〈   〉, where 
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and the modulus   is the automorphic function on    〈     〉, where 
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for       
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].  
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